Graph networks for molecular design
نویسندگان
چکیده
Abstract Deep learning methods applied to chemistry can be used accelerate the discovery of new molecules. This work introduces GraphINVENT, a platform developed for graph-based molecular design using graph neural networks (GNNs). GraphINVENT uses tiered deep network architecture probabilistically generate molecules single bond at time. All models implemented in quickly learn build resembling training set without any explicit programming chemical rules. The have been benchmarked MOSES distribution-based metrics, showing how compare well with state-of-the-art generative models. compares six different GNN-based and shows that ultimately gated-graph performs best against metrics considered here.
منابع مشابه
Graph Memory Networks for Molecular Activity Prediction
Molecular activity prediction is critical in drug design. Machine learning techniques such as kernel methods and random forests have been successful for this task. These models require fixed-size feature vectors as input while the molecules are variable in size and structure. As a result, fixed-size fingerprint representation is poor in handling substructures for large molecules. Here we approa...
متن کاملH∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملA Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring
All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...
متن کاملA Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks
In the various fields of disaster management, choosing the best location for the Emergency Support & Supply Service Centers (ESSSCs) and the survivability of the network that provides the links between ESSSCs and their environment has a great role to be paid enough attention. This paper introduces a graph based model to measure the survivability of the linking's network. By values computed for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine learning: science and technology
سال: 2021
ISSN: ['2632-2153']
DOI: https://doi.org/10.1088/2632-2153/abcf91